Project Name: Project Code: Agency Name:	WQA Site ID:		Observation ID: 1			
Site Informatic Desc. By: Date Desc.: Map Ref.: Northing/Long.: Easting/Lat.:	G.D. Hubble 01/09/69 Sheet No. : 6948 1:100000	Locality: Elevation: Rainfall: Runoff: Drainage:	90 metres 221 Very rapid Well drained			
<u>Geology</u> ExposureType: Geol. Ref.:	Auger boring Kw	Conf. Sub. is Pare Substrate Materia				
Land Form Rel/Slope Class:	Undulating low hills 30-90m 3- 10%	Pattern Type:	Pediment			
Morph. Type: Elem. Type: Slope:	Upper-slope Hillslope 0 %	Relief: Slope Category: Aspect:	No Data Gently inclined No Data			
Surface Soil C	ondition (dry):					
Erosion: Soil Classifica	tion					
ASC Confidence No analytical dat	nic Red Chromosol	Princi Great	ing Unit: N/A ipal Profile Form: Dr2.43 Soil Group: Desert loam			
Vegetation:		0 0 ,				
	e Fragments: 2-10%, medium gr	ravelly, 6-20mm, , Gra	avel			
Profile Morpho A1 0-0.1 n	n Reddish yellow (5YR6/6-D		n; Massive grade of structure; Dry; Weak Gravel, coarse fragments; Field pH 6.7 (pH			
A2 0.1 - 0.1		Pink (5YR7/4-Dry); ; Fine sandy loam; Massive grade of structure; Dry; Weak consistence; 2- 10%, medium gravelly, 6-20mm, Gravel, coarse fragments; Field pH 7.1 (pH meter); Sharp change to -				
B2 0.14 - 0.	mm, Polyhedral; Dry; Firm	Red (2.5YR4/6-Moist); Red (2.5YR5/6-Dry); ; Light medium clay; Strong grade of structure, 5-10 mm, Polyhedral; Dry; Firm consistence; 2-10%, fine gravelly, 2-6mm, coarse fragments; Field pH 7.1 (pH meter); Gradual change to -				
B2 0.2 - 0.3			e of structure, 5-10 mm, Polyhedral; Dry; Firm se fragments; Field pH 7.6 (pH meter); Gradual			
B2 0.3 - 0.4			yhedral; Dry; Firm consistence; 2-10%, fine pH meter); Gradual change to -			
0.4 - 0.6		Yellowish red (5YR5/6-Moist); ; Sandy loam; Weak consistence; 10-20%, medium gravelly, 6-20mm, coarse fragments; Field pH 8.3 (pH meter); Gradual change to -				
0.6 - 0.9	e m Red (2.5YR5/6-Moist); ; Sa coarse fragments; Field pH		sistence; 20-50%, medium gravelly, 6-20mm, dual change to -			
0.9 - 1.2	2 m Red (2.5YR5/6-Moist); ; Sa 6.8 (pH meter); Gradual ch		sistence; 20-50%, coarse fragments; Field pH			
1.2 - 1.3	B m Red (2.5YR5/6-Moist); ; Sa (pH meter);	andy loam; Weak con	sistence; 20-50%, coarse fragments; Field pH 7			
Morphological						
Observation N NO VEGETATION						

<u>Site Notes</u> MONKIRA Project Name: WQA Project Code: WQA Site ID: B604 Agency Name: CSIRO Division of Soils (QLD)

Observation ID: 1

Project Name:	WQA				
Project Code:	WQA	Site ID:	B604	Observation ID:	1
Agency Name:	CSIRO Division	of Soils (Q	LD)		

Laboratory Test Results:

TUSTING	suns.										
рН	1:5 EC Ca				E Na		CEC		ECEC		ESP
	dS/m		5		Cmol (+)						%
6.7H 7.1H 7.6H 8H 8.3H 7.2H 6.8H 7H	0.014B 0.039B 0.051B 0.059B 0.21B 1.5B 1.4B 0.62B										
CaCO3 %	Organic C %	Avail. P mg/kg	Total P %	Total N %	Total K %	Bulk Density Mq/m3	Pa GV	rticle CS	Size FS %		s Clay
		20B 4B	0.033F 0.025F	0.013 0.026 0.011	3B 0.93 5B 1B 0.78	B B			51 30 28	17 23 11	23
	рН 6.7Н 7.1Н 7.1H 7.6Н 8Н 8.3H 7.2H 6.8H 7H CaCO3 %	са dS/m 6.7H 0.014B 7.1H 0.039B 7.6H 0.051B 8H 0.059B 8.3H 0.21B 7.2H 1.5B 6.8H 1.4B 7.H 0.62B СаСОЗ Огданс С % % 0.14A 0.05A 0.13A 0.02C	рн 1:5 EC Ca Exch dS/m Ca M 6.7H 0.014B 7.1H 0.018B 7.1H 0.039B 7.6H 0.051B 8H 0.059B 8.3H 0.21B 7.2H 1.5B 6.8H 1.4B 7.2H 1.5B 6.8H 1.4B 7.2H 0.62B CaCO3 Organic C Mail. C Mail. P mg/kg 0.13A 0.02C	рн 1:5 EC dS/m Exchangeable Mg 6.7H 0.014B Mg 7.1H 0.018B Mg 7.1H 0.039B Mg 7.1H 0.039B Mg 7.1H 0.051B Mg 8H 0.059B Mg 8.3H 0.21B Mg 7.2H 1.5B Mg 6.8H 1.4B Mg 7.2H 1.5B Mg 6.8H 0.414A Mg Mg 0.14A 20B 0.033F 0.13A 4B 0.032F 0.13A 0.022C 0.12A	pH 1:5 EC dS/m Exchangeable Cations Mg K 6.7H 0.014B 7.1H K K 7.1H 0.018B 7.6H K K 7.6H 0.051B 8H K K 8H 0.059B 8.3H K K 6.8H 1.4B 7.2H K K 7.2H 1.5B 6.8H 1.4B 7.2H Total N Total N 6.3CO3 Organic C N Avail. P M Total N Total N 6.3CA C C 0.05A 20B 0.033F 0.02 0.013 4B 0.033F 0.13A 0.02C 0.13A 0.026 0.026	рн 1:5 EC cs dS/m Exchangeable Cations Mg Ha Cations Ha Cmol (+) 6.7H 0.014B 7.1H 0.018B 7.1H	PH1:5 EC caCaExchangeable Cations MgNaExchangeable Acidity Cmol (+)/kg6.7H0.014B 7.1H0.018B 7.039B 7.6H \cdot \cdot \cdot \cdot 7.1H0.039B 7.6H0.051B 0.051B 8134 \cdot \cdot \cdot \cdot \cdot 8.3H0.059B 8.3H0.059B 0.021B \cdot \cdot \cdot \cdot \cdot \cdot 6.6H1.4B 1.4B \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 6.6H1.4B 0.62B \cdot <	pH1:5 EC dS/mCaExchangeable Cations MgExchangeable AcidityExchangeable AcidityCEC $6.7H$ $7.1H$ $0.018B$ $7.1H$ $0.039B$ $7.6H$ $0.051B$ $8.3H$ $0.059B$ $8.3H$ $0.021B$ $7.2H$ $1.5B$ $6.8H$ $1.4B$ $7.2H$ $6.7H$ $0.051B$ $8.3H$ $0.021B$ $7.2H$ $1.5B$ $6.8H$ $1.4B$ $7.2H$ $1.62B$ Cec $Free$	PH1:5 EC dS/mCaExchangeable Cations MgExchangeable Activity NaExchangeable Activity ActivityCEC6.7H0.014B 7.1H0.018B 7.0410.018B 7.6H0.0151B 8.81 $$	PH1:5 EC dS/mCaExchangeable Cations MgExchangeable Cacidity Cmol (+)/kgCECECEC6.7 H0.014B 7.1H0.018B 7.0H $$	pH 1.5 EC dS/m Ca Mg Exchangeable K Exchangeable Na Cmol (+)/kg CEC ECEC 6.7H 0.014B

Depth	COLE	Gravimetric/Volumetric Water Contents			K sat	K unsat				
		Sat.	0.05 Bar	0.1 Bar	0.5 Bar	1 Bar	5 Bar	15 Bar		
m				g/	/g - m3/m3	3			mm/h	mm/h

 $\begin{array}{c} 0 - 0.1 \\ 0.1 - 0.14 \\ 0.14 - 0.2 \\ 0.2 - 0.3 \\ 0.3 - 0.4 \\ 0.4 - 0.6 \\ 0.6 - 0.9 \\ 0.9 - 1.2 \\ 1.2 - 1.3 \end{array}$

Project Name:	WQA		
Project Code:	WQA	Site ID:	B604
Agency Name:	CSIRO Divi	sion of Soils (C	QLD)

Laboratory Analyses Completed for this profile

10A_NR 17A_NR 19B_NR 2A1 3_NR 4_NR	Total element - S(%) - Not recorded Total element - K(%) - Not recorded Calcium Carbonate (CaCO3) - Not recorded Air-dry moisture content Electrical conductivity or soluble salts - Not recorded pH of soil - Not recorded
5_NR	Water soluble Chloride - Cl(%) - Not recordede
6A1	Organic carbon - Walkley and Black
7_NR	Total nitrogen (%) - Not recorded
9A_NR	Total element - P(%) - Not recorded
9G_BSES	Available P (mg/kg) - Acid P - 0.005M H2SO4 (BSES)
P10_NR_C	Clay (%) - Not recorded
P10_NR_CS	Coarse sand (%) - Not recorded
P10_NR_FS	Fine sand (%) - Not recorded
P10_NR_Z	Silt (%) - Not recorded
XRD_C_II	Illite - X-Ray Diffraction
XRD_C_ls	Interstratified clay minerals - X-Ray Diffraction
XRD_C_Ka	Kaolin - X-Ray Diffraction
XRD_C_Mm	Montmorillonite - X-Ray Diffraction
XRD_C_Qz	Quartz - X-Ray Diffraction

Observation ID: 1